2550 $H W7$
Solutions

 \mathcal{L}

 $(O(a))$ $Suppset C|_{\alpha=0} \rightarrow 0.$ j
Then C_1 $(-1, -1) = 0$ \circ \rangle . Then $\langle -c_{11}, -c_{12}\rangle = \langle 0 \rangle$ $\langle -c_1, -c_1 \rangle = \langle 0, 0 \rangle$
= 0. Suppo:
Then
So, SI
Thus. $\{a, c_1 = 0,$
Thus, $\{\vec{a}\}$ is a lin. Ind. set. So we can make $W = span(\vec{a})$ we can make h basis Ula)

Suppose $c_1 \overrightarrow{a} = 0$.

Then $c_1(-1,-1) = (0,0)$.

So, $c_1 = 0$.

Then $\langle -c_1, -c_1 \rangle = (0,0)$

So, $c_1 = 0$.

Thus, $\{\overrightarrow{a}\}$ is a lin. Ind. set

So we can make $W = span(\overrightarrow{a})$

So we can make $W = span(\overrightarrow{a})$

Some vectors in $\begin{pmatrix} 2 \ 1 \end{pmatrix}$

 $\overline{O(b)}$ and $\beta = [\vec{a}]$ is a basis
 $\overline{O(b)}$
 $W = span(\vec{a}) = \{c, \vec{a}| c \in \mathbb{R}\}$ Some vectors in Ware: .
(ر $2 \cdot \tilde{a} = 2$ I $\begin{matrix} 1 & 1 \\ -1 & 1 \end{matrix} = 1$ $-2, -2)$ $2 \cdot \overrightarrow{a} =$
- $\overrightarrow{a} =$ $\langle -|,$ - 1) ⁼ <, $\begin{matrix} 1 \ 1 \end{matrix}$ $2 \cdot \overline{\alpha} = 2 \cdot 1$
 $-\overline{\alpha} = -\langle -1, -2 \rangle$
 $\frac{1}{2} \overline{\alpha} = \frac{1}{2} \langle -1, 2 \rangle$ - $\begin{aligned} \bigg\backslash=\bigg\langle\begin{array}{c} 1 \\ 1 \end{array}\bigg\rangle\bigg\rangle = \bigg\langle\begin{array}{c} -\frac{1}{2} \\ 1 \end{array}\bigg\rangle^{-\frac{1}{2}} \bigg\rangle \end{aligned}$ $0 - 2$
 $0 - 0 < -$ 1 , $-\rangle$ = $\langle 0, 0 \rangle$

$$
\frac{D(a)}{D(a)}
$$
\n
\n
$$
W = \frac{a}{a}
$$
\n
\n
$$
W = \frac{a}{a}
$$
\n
\n
$$
V = \frac{1}{a}
$$
\n
\n
$$
V = \
$$

 $y = \langle 4, 4 \rangle =$ Since $v = -4a$ we know that J IS IN W = Span (a).

$$
W = c_1 \frac{1}{\alpha}
$$
\n
\n
$$
W = c_1 \frac{1}{\alpha}
$$
\n
\n
$$
W = w \text{ odd} \text{ need}
$$
\n
$$
W = w \text{ odd} \text{ need}
$$
\n
$$
W = w \text{ odd} \text{ required}
$$
\n
$$
W = w \text{ odd} \text{ required}
$$
\n
$$
W = (1, 2) = (-1, -1)^2
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n
$$
S = (1, -1)^2 = \frac{1}{2}
$$
\n $$

$$
Q(n)
$$
\n
$$
Solveose C, \lambda + C_{2}k = 0.
$$
\nThen, C, C, 0,0,7 + C_{2}C0,0,1) = C0,0,0\nThen, C, C, 0,0,7 + C_{2}C0,0,1) = C0,0,0,7\nThen, C, C, 0,0,7 + C₂C0,0,0,7\nSo, C, 0,0,2,7 = C0,0,0,7\nThus, C, = 0, C_{2} = 0.\nThus, C, = 0, C_{2} = 0. we know that
\nSine C, the only solution be known, that
\n
$$
Sine C, B, C_{2} = 0. we know that the\n
$$
Sine C, B, C_{2} = 0. we know that the\n
$$
Sine C, B, C_{2} = 0. we know that the\n
$$
Sine C, B, C_{2} = 0. we know that the\n
$$
Sine C, B, C_{2} = 0. we know that the\n
$$
Sine C, B, C_{2} = 0.00
$$
\n
$$
Sine C, B, C_{2} = 0.00
$$
\n
$$
Sine C, B, C_{2} = 0.00
$$
\n
$$
Sine C, B, C_{2} = 0.00
$$
\n
$$
Sine C, B, C_{2} = 0.00
$$
\n
$$
Sine C, B, C_{2} = 0.00
$$
\n
$$
Sine C, B, C_{2} = 0.00
$$
\n
$$
Sine C, B, C_{2} = 0.00
$$
\n
$$
Sine C, B, C_{2} = 0.00
$$
\n
$$
Sine C, B, C_{2} = 0.00
$$
\n
$$
Sine C, B, C_{2} = 0.00
$$
\n
$$
Sine C, B, C_{2} = 0.00
$$
\n
$$
Sine C, B, C_{2} = 0.00
$$
\n
$$
Sine C, B, C_{2} = 0.00
$$
\n
$$
Sine C, B, C_{2} = 0.00
$$
\n
$$
Sine C, B, C_{2} = 0.00
$$
\n $$
$$
$$
$$
$$
$$

 $Q(b)$ $W = span(\begin{matrix} 1 & 1 \\ 1 & k \end{matrix})$ = $\begin{array}{c}\n\overline{(b)} \\
\overline{)} \\
=58a(2)\overline{(b)} \\
=56.26\times10^{22} \text{ N} \text{ arc}\n\end{array}$ some yectors in Ware $2^{4}-3^{4}=2(1,0)$ $(10, 0)$
 $(0, 0)$ - 3 $(0, 0)$ $(0, 0)$ = $(2, 0)$ \circ , -3) $227 - 54$
 $7 + 04 = 5$ 0 , \circ $>$ + 0 $<$ 0, $0, 17 = 51, 000$ \vec{r} 1 ° 7 = - $\langle 1, 0 \rangle$ $-\zeta$ ر _{0 ر 0} ره)) = (-1,0)
() = (-1,0) - $| \circ \rangle$ $S_{i+2k} = 5 \langle 1,9,0 \rangle + 2 \langle 0,0,1 \rangle = \langle 5,0,2 \rangle$
 $Z^{(c)}$ The vectors in W are the ones of the form $\frac{1}{10}$
 $\frac{1}{10}$
 $\frac{1}{20}$ $\begin{array}{c} \overline{1} \\ \overline{1} \\ \overline{1} \end{array}$ 0 , $\begin{aligned} \n\text{Re} \quad & \text{for } m \\ \n&= c_1 \leq 1, \, \text{o}, \, \text{o} \text{ is } t \leq 2 \leq 0, \, \text{o} \text{ is } t \leq 2 \\ \n&= \leq c_1, \, \text{o}, \, \text{c}_2 \text{ is } t \leq 0, \, \text{if } n = 0, \$ $=$ $\langle c_{1},0,c_{2}\rangle$ 4) This is the plane $y=0$, ie these vectors lie on the the

 $\textcircled{2}(d)$ Since the basis $\beta = \begin{bmatrix} \frac{1}{\lambda}, \frac{1}{k} \end{bmatrix}$ for Whas Zvectors in it, $dim(W) = 2.$

 $\vec{v} = (3,0,2) = (3,0,2)$ 0 $\langle 0, 0 \rangle + \langle 0, 0 \rangle$ 2 $= 3$ $($ 1, 0, 0) + 2 < 0, 0, 1) $\overline{}$ $= 3\overrightarrow{i} + 2\overrightarrow{k}$. + i_{n} $W = \text{span}\{\vec{z}, \vec{k}\}.$ $201e1
\n107e2
\n108e3
\n109e4
\n109e5
\n109e$ $Thus,$ Suppose we $\frac{1}{\sqrt{1+1}}$ Suppose we tried to solve
 $\frac{1}{\sqrt{1+1}}$ Suppose we tried to solve $\vec{v} = C_1 \vec{\lambda} + C_2 \vec{k}.$ Then we would need h cn We wooner 0 , $\begin{matrix} 1 & 0 \\ 0 & 0 \end{matrix} + 12(0, 0, 1)$ Which Would require $\langle 1,3,4 \rangle$

hich Would req
 $\langle 1,3,4 \rangle = \langle 1 \rangle$ 0 , $\begin{array}{c} 2 \\ 0 \end{array}$ + $\begin{array}{c} 0 \\ 0 \end{array}$, $\begin{array}{c} 0 \\ 0 \end{array}$ o,
 \int $0^{^{\circ}}$ $(1, 3, 4) = (6, 1)$ 0, C₂)

$$
8vt
$$
 then $3=0$.
This is impossible.
So, \vec{v} is not in $W=span(\vec{x},\vec{k})$.

$$
8y + then 3 = 0.
$$
\nThis is impossible.
\nSo, \vec{v} is no possible.
\n
$$
50, \vec{v}
$$
 is no possible.
\n
$$
50, \vec{c}
$$
 is no possible.
\nThen, $c_1 \langle 1, 1, 1 \rangle + c_2 \langle 1, 0, 0 \rangle = \langle 0, 0, 0 \rangle$.
\n
$$
50, \vec{c} \langle 1, 1, 1 \rangle + c_2 \langle 1, 0, 0 \rangle = \langle 0, 0, 0 \rangle
$$
.
\nThus, $\langle c_1 + c_2, c_1, c_1 \rangle = \langle 0, 0, 0 \rangle$.
\nThus, $c_1 = 0$, $c_2 = -c_1 = -0 = 0$.
\n
$$
60, \vec{c} \rangle = 0
$$

\nSince the only solutions to
\n $c_1 = 0$, $c_2 = 0$ we know that

$$
\vec{a}
$$
 and \vec{b} are linearly independent.
\nThus, $\beta = [\vec{a}, \vec{b}]$ is a basis
\nfor $M=span(\vec{a}, \vec{b})$.
\n $\overline{3}(5)$
\n $M=span(\vec{a}, \vec{b})$
\n $S=2+cos(\vec{a}+\vec{b})$

For
$$
M = span(\vec{a}, \vec{b})
$$
.

\n
$$
\boxed{3(b)}
$$

\n
$$
= \{c_1\vec{a} + c_2\vec{b} | c_1, c_2 \in \mathbb{R} \}
$$

\n
$$
= \{c_1\vec{a} + c_2\vec{b} | c_1, c_2 \in \mathbb{R} \}
$$

\n
$$
Thus, some vec in M are:
$$

\n
$$
0\vec{a} + \vec{b} = 0 \langle v_1 v_1 \rangle + \langle v_1 v_2 v_2 \rangle = \langle v_1 v_1 v_1 \rangle
$$

\n
$$
- \vec{a} + 2\vec{b} = -\langle v_1 v_1 \rangle + 2\langle v_1 v_2 v_2 \rangle = \langle v_2 v_1 v_1 \rangle
$$

\n
$$
= 2 \langle v_1 v_1 \rangle + 0 \langle v_2 v_2 \rangle = \langle z_1 z_1 z_2 \rangle
$$

\n
$$
2\vec{a} + 0\vec{b} = 2 \langle v_1 v_1 \rangle + 0 \langle v_2 v_2 \rangle = \langle z_1 z_1 z_2 \rangle
$$

\n
$$
3\vec{a} + 5\vec{b} = 3 \langle v_1 v_1 \rangle + 5 \langle v_1 v_2 v_2 \rangle = \langle z_1 z_1 z_2 \rangle
$$

\n
$$
3\vec{b} + 5\vec{b} = 3 \langle v_1 v_1 \rangle + 5 \langle v_1 v_2 v_2 \rangle = \langle z_1 z_2 \rangle
$$

\n
$$
3\vec{b} + 5\vec{b} = 3 \langle v_1 v_1 \rangle + 5 \langle v_1 v_2 v_2 \rangle = \langle z_1 z_2 \rangle
$$

\n
$$
3\vec{b} + 5\vec{b} = 3 \langle v_1 v_1 \rangle + 5 \langle v_1 v_2 v_2 \rangle = \langle z_1 z_2 \rangle
$$

\n
$$
3\vec{b} + 5\vec{b} = 3 \langle v_1 v_1 \rangle + 5 \langle v_1 v_2 \rangle = \langle z_1 v_2 \rangle
$$

$$
\frac{1}{3(c)} \text{Since the basis } \beta = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ for } W
$$

has 2 vectors in it, dim(w)=2.

3(a) We want to solve
$$
\vec{v} = c_1 \vec{a} + c_2 \vec{b}
$$
.
\nThis needs $(\frac{1}{2}, -3, -3) = c_1(1,1,1) + c_2(1,0,0)$
\nThis needs $(\frac{1}{2}, -3, -3) = (c_1 + c_2, c_1, c_1)$.
\nWe get $c_1 + c_2 = \frac{1}{2}, c_1 = -3, c_1 = -3$.
\nSo, $c_1 = -3, c_2 = \frac{1}{2} - c_1 = \frac{1}{2} - (-3) = \frac{7}{2}$.
\nThus, $\vec{v} = -3\vec{a} + \frac{7}{2}\vec{b}$.
\nSo, \vec{v} is in W = span(\vec{a}, \vec{b}).
\nSo, \vec{v} is in W = solue $\vec{v} = c_1 \vec{a} + c_2 \vec{b}$.
\n3(e) We want to try to solve $\vec{v} = c_1 \vec{a} + c_2 \vec{b}$.
\nThis becomes $(1, 2, 3) = c_1(1,1) + c_2(1,0,0)$.
\nThis gives $(1, 2, 3) = (c_1 + c_1, c_1) - c_1$?
\nThis gives $(1, 2, 3) = (c_1 + c_2, c_1) - c_1$?
\nThis gives $1 = c_1 + c_2, 2 = c_1, 3 = c_1$.
\nThis gives $1 = c_1 + c_2, 2 = c_1, 3 = c_1$.
\nThis gives $1 = c_1 + c_2, 2 = c_1, 3 = c_1$.
\nThis gives $c_1 = 2$ and $c_1 = 3$ is impossible.
\nBut $c_1 = 2$ and $c_1 = 3$ is in possible.
\nThus, \vec{v} is not in W = span(\vec{a}, \vec{b}).

$$
\frac{4(a)}{b}W=\{(3)\mid 2x-y=0\}
$$
\n
$$
\frac{[i-i\omega]By +h\nu\text{ homogeneous subspace.}
$$
\n
$$
[j\omega\text{ is a subspace of }\mathbb{R}^{2}]\text{ let }\frac{1}{b}du\text{ a basis for }\omega\}
$$
\n
$$
Let \vec{w}=(\vec{y})\text{ be in }\omega\text{.\n\nThen\n\n
$$
\frac{2x-y=0}{2x-y=0}
$$
\n
$$
y=\frac{1}{2}x
$$
\n
$$
x=\frac{1}{2}y=\frac{1}{2}x
$$
\n<math display="</math>
$$

Thus,
$$
W = span(\vec{a})
$$
 with basis $\vec{p} = [\vec{a}]$
And dim(w)=1 since β consists of 1 vector.

$$
\begin{array}{ll}\n\boxed{(iv)} & \text{W = span} \left(\frac{1}{\alpha}\right) = \left\{ c_1 \frac{1}{\alpha} \mid c_1 \in \mathbb{R} \right\}.\n\end{array}
$$
\nHere, $\alpha c \in H$ is a complex vector in W:

\n
$$
2 \frac{1}{\alpha} = 2 \begin{pmatrix} 1/2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}
$$
\n
$$
\begin{array}{ll}\n\frac{1}{\alpha} = 0 \begin{pmatrix} 1/2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$
\n
$$
-3\frac{1}{\alpha} = -3 \begin{pmatrix} 1/2 \\ 1 \end{pmatrix} = \begin{pmatrix} -3/2 \\ -3 \end{pmatrix}
$$
\n
$$
\vec{\pi} \vec{a} = \pi \begin{pmatrix} 1/2 \\ 1 \end{pmatrix} = \begin{pmatrix} \pi/2 \\ \pi \end{pmatrix}
$$

$$
\frac{4(b)}{W} = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| \begin{matrix} x-y+2z=0 \\ y+z=0 \end{matrix} \right\}
$$
\n
$$
\frac{(i-iii)}{(k-iii)} By the homogeneous subspace\n
$$
\frac{1}{k}
$$

\n
$$
\frac{1}{k}e^{k}sinh \alpha
$$
 basis for W.
\nLet $\vec{w} = \begin{pmatrix} x \\ y \end{pmatrix}$ be in W.
\nThen,
\n
$$
\frac{x-y+2z=0}{y+z=0} = \begin{pmatrix} 0 & |coding: x,y \\ 0 & |cee: z \end{pmatrix}
$$

\nThen,
$$

Then,
\n
$$
z = t
$$

\n $y = -2z = -t$
\n $x = y - 2z = -t - 2t = -3t$
\nSo,
\n $\vec{w} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3t \\ -2t \\ t \end{pmatrix} = t \begin{pmatrix} -3 \\ -1 \\ 1 \end{pmatrix}$
\nSo, $u \rightarrow e^{ctor} \vec{w}$ in W lies in the
\n $50 \text{ and } v e^{ctor} \vec{w}$ in W lies in the
\n $50 \text{ and } v e^{ctor} \vec{w}$ in W lies in the

Since
$$
\vec{a}
$$
 is a single non-zero vector,
\n $\{\vec{a}\}$ is a linearly independent set.
\nThus, $W = span(\vec{a})$ with basis $\vec{p} = [\vec{a}]$.
\nSo, $dim(W) = 1$ since p has 1 vector in it.
\n $(\vec{b} \cdot \vec{a})$
\n $W = span(\vec{a})$ where $\vec{a} = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$.
\nThus, $fur = xname$ vectors in W are:
\n $2\vec{a} = 2 \begin{pmatrix} -3 \\ 1 \end{pmatrix} = \begin{pmatrix} -6 \\ 2 \\ 1 \end{pmatrix}$
\n $-\vec{a} = -\begin{pmatrix} -3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \end{pmatrix}$
\n $\frac{1}{2}\vec{a} = \frac{1}{2} \begin{pmatrix} -3 \\ -1 \end{pmatrix} = \begin{pmatrix} -31/2 \\ -1/2 \end{pmatrix}$
\n $0\vec{a} = 0 \begin{pmatrix} -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$
H(c) \bigvee \{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid 2x - 4y - 3z = 0 \}
$$

$$
\begin{array}{|l|l|l|} \hline & \text{(i-iii)} & \text{By} & \text{the homogeneous subspace} \\ \hline & \text{theorem, W is a subspace of } \mathbb{R}^3. \\ \hline & \text{Let's find a basis for W.} \\ \hline & \text{Let's find a basis for W.} \\ \hline & \text{let } \vec{w} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} & \text{be in W.} \end{array}
$$

$$
\frac{\pi}{2x-4y-3z=0}
$$

 ζ (3) Z = U $Qy=t$ $0x=2y+\frac{3}{2}z=2\pm+\frac{3}{2}u$

Thus,
\n
$$
\vec{w} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x + \frac{3}{2}u \\ u \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} 2x + \frac{3}{2}u \\ x \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} 2x + \frac{3}{2}u \\ 0 \end{pmatrix}
$$
\n
$$
= \begin{pmatrix} 2x + \frac{3}{2}u \\ 0 \end{pmatrix}
$$
\nThus, if \vec{w} is in \vec{w} , the \vec{w} lies
\n
$$
\vec{a} + \vec{b} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}
$$
 and $\vec{b} = \begin{pmatrix} 3/2 \\ 0 \end{pmatrix}$.
\nLet's show that $\vec{a} \in \vec{b}$ are linearly independent.
\nSigma, $c_1(\vec{a} + c_1 \vec{b} = \vec{0}$.
\nThen, $c_1(\begin{pmatrix} 2 \\ 0 \end{pmatrix} + c_2(\begin{pmatrix} 3/2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix})$.
\nSo, $\begin{pmatrix} 2c_1 + \frac{3}{2}c_1z_0 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
\nThus, $2c_1 + \frac{3}{2}c_2 = 0$, $c_1 = 0$, $c_2 = 0$.
\nSo, the only solutions be $c_1\vec{a} + c_2\vec{b} = 0$

The only solution are $c_1 = 0$, $c_2 = 0$.
Thus, \vec{a} , \vec{b} are linearly independent

There,
$$
W = span(\vec{a}, \vec{b})
$$
 where
\n
$$
\beta = [\vec{a}, \vec{b}] is a basis for W.
$$
\nAnd $dim(w) = 2$ since β has 2
\n $veches \in \vec{h}$ if.
\n $(\vec{a}, \vec{b}) = \sum_{n=1}^{\infty} c_n \vec{a} + c_2 \vec{b} \cdot c_1, c_2 \in \mathbb{R}$.
\n $(\vec{a}, \vec{b}) = \sum_{n=1}^{\infty} c_n \vec{a} + c_2 \vec{b} \cdot c_1, c_2 \in \mathbb{R}$.
\n $sin \theta = \frac{1}{2} \int_{\vec{a}}^{\vec{a}} \vec{a} + \int_{\vec{a}}^{\vec{b}} \vec{b} = \int_{\vec{a}}^{\vec{a}} \vec{b} + \int_{\vec{a}}^{\vec{a}} \vec{c} = \int_{\vec{a}}^{\vec{a}} \vec{c} + \int_{\vec{a}}^{\vec{a}} \vec{c} = \int$

$$
\frac{41(d)}{W(1)} \text{ W} = \left\{ \begin{pmatrix} x \\ y \\ z \\ u \end{pmatrix} \middle| \begin{matrix} x \\ y \\ z \\ w \end{matrix} \middle| \begin{matrix} x \\ y \\ z \\ w \end{matrix} + z - u = 0 \end{matrix} \right\}
$$
\n
$$
\frac{1}{W} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + k \text{ homogeneous subspace theorem,}
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n
$$
k \text{ times the number of } R^4.
$$
\n<

So,
\n
$$
\vec{w} = \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} x-5 \\ -x+5 \\ z \\ z \end{pmatrix} = \begin{pmatrix} \frac{t}{x} \\ -\frac{t}{x} \\ \frac{t}{x} \end{pmatrix} = \begin{pmatrix} \frac{t}{x} \\ -\frac{t}{x} \\ \frac{t}{x} \end{pmatrix} + \begin{pmatrix} -5 \\ 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
= t \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + s \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}
$$
\nThus, every vector \vec{w} in \vec{w} lies in the
\nSpan of $\vec{a} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\vec{b} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.
\nThese vectors are linearly independent since if
\n
$$
c \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + c_2 \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$
\n
$$
= (c_1 - c_2) \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$

$$
+he^{\wedge}\left(\begin{array}{c}c_{1}-c_{2}\\-c_{1}+c_{2}\\c_{1}\\c_{2}\end{array}\right)=\begin{pmatrix}0\\0\\o\\o\end{pmatrix}
$$

which gives
\n
$$
c_i = 0, c_2 = 0
$$
.
\nThere for $n, W = span(\vec{a}, \vec{b})$ and $p = [\vec{a}, \vec{b}]$
\nis a basis for W.

11.
$$
-\sqrt{2}
$$
 $\sinh(\sqrt{10}) = 2$ $\sinh(\sqrt{10}) = 2$

\n12. $\sqrt{2}$ $\sinh(\sqrt{10}) = 2$

\n13. $\sqrt{2}$ $\sinh(\sqrt{10}) = 2$

\n14. $\sqrt{2}$ $\sinh(\sqrt{10}) = \frac{1}{2}$

\n15. $\sqrt{2}$ $\sinh(\sqrt{10}) = \frac{1}{2}$

\n16. $\sqrt{2}$ $\sinh(\sqrt{10}) = \frac{1}{2}$

\n17. $\sqrt{2}$ $\sinh(\sqrt{10}) = 2$

\n17. $\sqrt{2}$ $\sinh(\sqrt{10}) = 2$

\n17. $\sqrt{2}$ $\sinh(\sqrt{10}) = 2$

\n17. $\sqrt{2}$ $\sinh(\sqrt{10}) = \frac{1}{2}$

\n17. $\sqrt{2}$ $\sinh(\sqrt{10}) = 2$

\n17. $\sqrt{2}$ $\sinh(\sqrt{10}) = \frac{1}{2}$

\n17. $\sqrt{2}$ $\sinh(\sqrt{10}) = 2$

\n