2550 HW 7 Solutions

 $(](\alpha)$ Suppose cia=0. Then $C_1 \langle -1, -1 \rangle = \langle 0, 0 \rangle$. Then $\langle -c_1, -c_1 \rangle = \langle 0, 0 \rangle$ $So_1 < 1 = 0$ Thus, { a} is a lin. ind. set. So we can make W=span(a) and B=[a] is a basis for W.

 $W = \operatorname{Span}(\overline{a}) = \{\overline{c}, \overline{a}\} \subset \{\overline{c}, \overline{R}\}.$ (b) Some vectors in Ware: $2 \cdot a = 2 \langle -1, -1 \rangle = \langle -2, -2 \rangle$ $-a = -\langle -1, -1 \rangle = \langle 1, 1 \rangle$ シュニシ (-1) - (-シ, シ) $0\vec{a} = 0 < -1, -1 > = < 0, 0 >$

$$(D(c)) \qquad 1 \qquad 2\frac{1}{a}$$

$$W \qquad a \qquad 1 \qquad 2\frac{1}{a}$$

$$W \qquad a \qquad 1 \qquad 2\frac{1}{a}$$

$$(D(d)) \qquad dim(W) = 1 \qquad 1 \qquad vector in it = 1 \qquad vecto$$

$$\vec{v} = \langle 4, 4 \rangle = -4 \langle -1, -1 \rangle^{-1}$$
 that
Since $\vec{v} = -4\vec{a}$ we know that
 \vec{v} is in $W = \text{Span}(\vec{a})$.

D(f) Can we solve

$$\vec{v} = c_1 \vec{a}$$
?
We would need
 $\langle 1, \frac{1}{2} \rangle = c_1 \langle -1, -1 \rangle$
which would require
 $\langle 1, \frac{1}{2} \rangle = \langle -c_1 j - c_1 \rangle$
 $for c_1 = 1, -c_1 = \frac{1}{2}$.
Then $c_1 = -1$ and $c_1 = -\frac{1}{2}$.
This is impossible.
Thus, \vec{v} is not in
 $W = \text{span}(\vec{a})$.

Z (b) W= span(i,k) $= \{c_1, z_1 + c_2, k \mid c_1, c_2 \in \mathbb{R}\}$ Some vectors in Ware $2\frac{1}{2}-3\frac{1}{k}=2\langle 1, 0, 0 \rangle -3\langle 0, 0, 1 \rangle = \langle 2, 0, -3 \rangle$ えもした= <い,0,0)+0<0,1)= <し,0,0) $-\frac{1}{2} - \frac{1}{2} - \frac{1$ Si + 2i = 5 < 1, 0, 07 + 2 < 0, 0, 17 = < 5, 0, 27Z(c) The vectors in Ware the ones of the form $c_{1} + c_{2} = c_{1} < 1, 0, 0 + c_{2} < 0, 0, 1$ $= \langle c_{1}, 0, c_{2} \rangle$ This is the plane y=0, ie these vectors lie on the

2(d) Since the basis B=[i,k] for Whas Zvectors in it, dim(W) = 2.

 $\vec{V} = \langle 3, 0, 2 \rangle = \langle 3, 0, 0 \rangle + \langle 0, 0, 2 \rangle$ = 3 < 1, 0, 0 > + 2 < 0, 0, 1>= 3 i + 2k. in $W = span(\vec{z}, \vec{k})$. Thus, V is 2(f) Suppose we tried to solve $V = C_1 \dot{\lambda} + C_2 \dot{k}.$ Then we would need $<1,3,47 = c_1 < 1, 0,07 + c_2 < 0,0,17$ which would require < 1, 3, 4 > = $< c_1, 0, 0$ > + $< 0, 0, c_2$ > $\langle 1,3,4\rangle = \langle c_1,0,c_2\rangle$

(3) (a)
Suppose
$$c_1 \overline{a} + c_2 \overline{b} = \overline{0}$$
.
Then, $c_1 < 1, 1, 1$ + $c_2 < 1, 0, 0$ > = $< 0, 0, 0$.
So, $< c_1, c_1, c_1$ + $< c_2, 0, 0$ > = $< 0, 0, 0$.
Thus, $< c_1 + c_2 = 0, c_1 > = < 0, 0, 0$.
This gives $c_1 + c_2 = 0, c_1 = 0$.
Then, $c_1 = 0, c_2 = -c_1 = -0 = 0$.
Since the only solutions to
 $c_1 \overline{a} + c_2 \overline{b} = \overline{0}$
Are $c_1 = 0, c_2 = 0$ we know that

$$\vec{a}$$
 und \vec{b} are linearly independent.
Thus, $\beta = [\vec{a}, \vec{b}]$ is a basis
for $W = span(\vec{a}, \vec{b})$.

$$(3)(b)$$

$$W = span(\vec{a}, \vec{b})$$

$$= \{c_1\vec{a} + c_2\vec{b} \mid c_1, c_2 \in \mathbb{R}\}$$

Thus, some vectors in W are:

$$0\vec{a} + \vec{b} = 0 < 1, 1, 1 > + < 1, 0, 0 > = < 1, 0, 0 > 1$$

$$-\vec{a} + 2\vec{b} = - < 1, 1, 1 > + 2 < 1, 0, 0 > = < 1, -1, -1 > 1$$

$$-\vec{a} + 2\vec{b} = - < 1, 1, 1 > + 2 < 1, 0, 0 > = < 2, 2, 2 > 2$$

$$2\vec{a} + 0\vec{b} = 2 < 1, 1, 1 > + 5 < 1, 0, 0 > = < 8, 3, 3 > 3$$

$$3\vec{a} + 5\vec{b} = 3 < 1, 1, 1 > + 5 < 1, 0, 0 > = < 8, 3, 3 > 3$$

3(c) Since the basis
$$B = [\overline{a}, \overline{b}]$$
 for W
has Z vectors in it, dim $(w) = Z$.

3(d) We want to solve
$$\vec{v} = c_1\vec{a} + c_2\vec{b}$$
.
This requires $\langle \frac{1}{2}r^3, 3 \rangle = c_1\langle 1, 1, 1 \rangle + c_2\langle 1, 0, 0 \rangle$.
This needs $\langle \frac{1}{2}r^3, -3 \rangle = \langle c_1 + c_2, c_1, c_1 \rangle$.
We get $c_1 + c_2 = \frac{1}{2}$, $c_1 = -3$, $c_1 = -3$.
So, $c_1 = -3$, $c_2 = \frac{1}{2} - c_1 = \frac{1}{2} - (-3) = \frac{7}{2}$.
Thus, $\vec{v} = -3\vec{a} + \frac{7}{2}\vec{b}$.
So, \vec{v} is in $W = \text{span}(\vec{a}, \vec{b})$.
3(c) We want to try to solve $\vec{v} = c_1\vec{a} + c_2\vec{b}$.
This becomes $\langle 1, 2, 3 \rangle = c_1\langle 1, 1, 1 \rangle + c_2\langle 1, 0, 0 \rangle$.
This gives $\langle 1, 2, 3 \rangle = \langle c_1 + c_2 \rangle c_1 \rangle c_1 \gamma$.
This gives $\langle 1, 2, 3 \rangle = \langle c_1 + c_2 \rangle c_1 \rangle c_1 \gamma$.
This gives $| = c_1 + c_2 \rangle | = c_1 | = c_1 \cdot c_2 \rangle$.
But $c_1 = 2$ and $c_1 = 3$ is impossible.
But $c_1 = 2$ and $c_1 = 3$ is impossible.
Thus, \vec{v} is not in $W = \text{span}(\vec{a}, \vec{b})$.

4(a)
$$W = \{ \begin{pmatrix} x \\ y \end{pmatrix} \mid z \times -y = o \}$$

(i-jiii) By the homogeneous subspace theorem,
W is a subspace of IR². Let's find a basis
Let $\vec{W} = \begin{pmatrix} x \\ y \end{pmatrix}$ be in W.
Then
 $Zx - y = 0$
Or
 $x - \frac{1}{2}y = 0$
Or
The solutions to this system are
 $y = t$
 $x = \frac{1}{2}y = \frac{1}{2}t$
Thus,
 $\vec{W} = \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{1}{2}t \\ t \end{pmatrix} = t \begin{pmatrix} y_2 \\ 1 \end{pmatrix}$.
So any vector \vec{W} in W lies in the span
of $\vec{a} = \begin{pmatrix} y_2 \\ t \end{pmatrix}$.
Since $\vec{a} \neq \vec{0}$, the set $\{\vec{a}\}$ is a linearly
independent set.

Thus,
$$W = span(\vec{a})$$
 with basis $B = [\vec{a}]$
And dim(w)=1 since B consists of l vector.

(iv)
$$W = \operatorname{Span}(\overline{a}) = \{c_1\overline{a} \mid c_1 \in \mathbb{R}\}.$$

Here are $\Psi = \operatorname{scample}$ vectors in W :
 $Z\overline{a} = Z\begin{pmatrix} \frac{1/2}{1}\\1 \end{pmatrix} = \begin{pmatrix} 1\\2 \end{pmatrix}$
 $0\overline{a} = 0\begin{pmatrix} \frac{1/2}{1}\\1 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix}$
 $-3\overline{a} = -3\begin{pmatrix} \frac{1/2}{1}\\1 \end{pmatrix} = \begin{pmatrix} -3/2\\-3 \end{pmatrix}$
 $T\overline{a} = T\left(\frac{1/2}{1}\right) = \begin{pmatrix} T/2\\T \end{pmatrix}$

4(b)

$$W = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \middle| \begin{array}{c} x - y + 2z = 0 \\ y + z = 0 \end{array} \right\}$$
(i-iii) By the homogeneous subspace
theorem, W is a cubspace of IR³.
Let's find a basis for W.
Let $\vec{w} = \begin{pmatrix} x \\ y \end{pmatrix}$ be in W.
Then,
 $\begin{array}{c} x - y + 2z = 0 \\ y + z = 0 \end{array}$ is leading: x,y
Then

Then,

$$z = t$$

$$y = -z = -t$$

$$x = y - 2z = -t - 2t = -3t$$

$$so = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -3 \\ -t \\ -t \\ z \end{pmatrix} = t \begin{pmatrix} -3 \\ -1 \\ 1 \end{pmatrix}$$

$$So uny \ vector \ \overline{w} \ in \ W \ lies \ in \ the$$

$$spun \ of \ \overline{a} = \begin{pmatrix} -3 \\ -1 \\ 1 \end{pmatrix}.$$

Since
$$\vec{a}$$
 is a ringle non-zero vector,
 $\{\vec{z},\vec{a}\}\$ is a linearly independent set.
Thus, $W = \text{span}(\vec{a})$ with basis $B = [\vec{a}]$.
So, dim $(W) = 1$ since B has 1 vector in it
(i) $W = \text{span}(\vec{a})$ where $\vec{a} = \begin{pmatrix} -3 \\ -1 \end{pmatrix}$.
Thus, four example vectors in W are:
 $2\vec{a} = 2\begin{pmatrix} -3 \\ -1 \end{pmatrix} = \begin{pmatrix} -6 \\ 2 \end{pmatrix}$
 $-\vec{a} = -\begin{pmatrix} -3 \\ -1 \end{pmatrix} = \begin{pmatrix} -3 \\ -1 \end{pmatrix}$
 $\frac{1}{2}\vec{a} = \frac{1}{2} \begin{pmatrix} -3 \\ -1 \end{pmatrix} = \begin{pmatrix} -3 \\ -1 \end{pmatrix}$
 $\frac{1}{2}\vec{a} = \frac{1}{2} \begin{pmatrix} -3 \\ -1 \end{pmatrix} = \begin{pmatrix} -3 \\ -1 \\ -1/2 \end{pmatrix}$
 $\vec{a} = 0 \begin{pmatrix} -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$4\left(c\right) W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \middle| z \times -4y - 3z = 0 \right\}$$

(i-iii) By the homogeneous subspace
theorem, W is a subspace of
$$\mathbb{R}^3$$
.
Let's find a basis for W.
Let $\vec{W} = \begin{pmatrix} x \\ 2 \end{pmatrix}$ be in W.

Then,
$$Z \times - 4y - 3z = 0$$

ςυ, (3) Z = U 2 y=t ① ×= Zy+ = Z = Z + = = U

Thus,

$$\vec{w} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2t + \frac{3}{2}u \\ u \end{pmatrix}$$

$$= \begin{pmatrix} 2t \\ z \\ 0 \end{pmatrix} + \begin{pmatrix} \frac{3}{2}u \\ 0 \\ u \end{pmatrix}$$

$$= t \begin{pmatrix} 2 \\ t \\ 0 \end{pmatrix} + u \begin{pmatrix} 3/2 \\ 0 \\ u \end{pmatrix}$$
Thus, if \vec{w} is in W , the \vec{w} lies
in the span of $\vec{a} = \begin{pmatrix} 7 \\ 0 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} 3/2 \\ 0 \\ 1 \end{pmatrix}$.
Let's show that $\vec{a} + \vec{b}$ are linearly independent.
Suppose $c_1\vec{a} + c_2\vec{b} = \vec{0}$.
Then, $c_1\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + c_2\begin{pmatrix} 3/2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.
So, $\begin{pmatrix} 2c_1 + \frac{3}{2}c_2 \\ c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.
Thus, $2c_1 + \frac{3}{2}c_2 = 0$, $c_1 = 0$, $c_2 = 0$.

So, the only solutions to ciatczb= 0 are ci=0, cz=0. Thus, a, b are linearly independenti

Therefore,
$$W = \operatorname{span}(\vec{a}, \vec{b})$$
 where
 $B = [\vec{a}, \vec{b}]$ is a basis for W .
And dim $(W) = 2$ since β has Z
vectors in it.
(iv) $W = \operatorname{span}(\vec{a}, \vec{b}) = \frac{2}{2}c_1\vec{a}+c_2\vec{b} | c_1, c_2 \in \mathbb{R}^2$.
(iv) $W = \operatorname{span}(\vec{a}, \vec{b}) = \frac{2}{2}c_1\vec{a}+c_2\vec{b} | c_1, c_2 \in \mathbb{R}^2$.
So, Ψ example vectors in W are:
So, Ψ example vectors in W are:
 S_0, Ψ example V constant W are:
 S_0, Ψ and W are:
 S_0, Ψ are:
 S_0, Ψ and W are:
 S_0, Ψ are:
 S_0

$$\begin{array}{l} H(d) \\ W = \left\{ \begin{pmatrix} x \\ y \\ u \end{pmatrix} \middle| \begin{array}{c} x & -z + u = 0 \\ y + z - u = 0 \end{array} \right\} \\ \hline \\ (i - iii) \\ By the humogeneous subspace theorem, \\ W is a subspace of \mathbb{R}^{q} .
Let's find a basis for W .
Let $\overline{W} = \begin{pmatrix} x \\ y \\ u \end{pmatrix}$ be in W .
Then,

$$\begin{array}{c} X & -z + u = 0 \\ y + z - u = 0 \\ y + z - u = 0 \end{array} \xrightarrow{already reduced} \\ \begin{array}{c} leading' : x, y \\ reding' : x, y \\ free : z, u \\ \end{array} \xrightarrow{s} \\ \hline \\ W = s \\ \hline \\ W = s \\ \hline \\ W = s \\ \hline \\ W = -z + u = -z + s \\ y = -z + u = -z + s \\ x = z - u = -z - s \end{array}$$$$

$$\begin{pmatrix} c_1 & c_2 \\ -c_1 + c_2 \\ c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

which gives

$$c_1 = 0, c_2 = 0.$$

Therefore, $W = \text{Span}(\vec{a}, \vec{b})$ and $B = [\vec{a}, \vec{b}]$
is a basis for $W.$

And dim
$$(W) = 2$$
 since β has 2
Vectors in it.
(iv) $W = Spun(\vec{a}, \vec{b})$
Thus 4 example vectors in W are:
 $\vec{a} + 0.\vec{b} = 1 \cdot \begin{pmatrix} -i \\ 0 \end{pmatrix} + 0 \begin{pmatrix} -i \\ 0 \end{pmatrix} = \begin{pmatrix} -i \\ 0 \end{pmatrix}$
 $\vec{a} + 1.\vec{b} = 0 \cdot \begin{pmatrix} -i \\ 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} -i \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$
 $\vec{a} + 1.\vec{b} = 2 \cdot \begin{pmatrix} -i \\ 0 \end{pmatrix} + 1 \cdot \begin{pmatrix} -i \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$
 $\vec{a} - 5 \cdot \vec{b} = 5 \cdot \begin{pmatrix} -i \\ 0 \end{pmatrix} - 5 \cdot \begin{pmatrix} -i \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ -5 \end{pmatrix}$